International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 2, Mar 2014, 25-38 © IASET



# **OPEN CHANNEL FLOW RESISTANCE**

## **BIRENDRA KUMAR SINGH**

Department of Civil Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

# ABSTRACT

The effects of Cross-Sectional Shape boundary non uniformity and flow unsteadiness in addition to viscosity and wall roughness are considered in open channel flow resistance.

Subjects Headings: Boulders, Channels, Drag, Flow resistance, Flumes

KEYWORDS: Friction Factor, Hydraulic Geometry, Roughness

## **INTRODUCTION**

### **Flow Characteristics**

The roughness is intermediate scale if the relative submergence lies between about four and `5, the latter limit marking the boundary with small scale roughness

For Large Scale Roughness: 
$$\frac{d}{S_{50}} < 4$$

Where 
$$\frac{d}{S_{50}}$$
 = Relative Submergence

Intermediate Scale Roughness:  $4 < \frac{d}{S_{50}} < 15$ 

In which d = Mean depth of flow and  $S_{50}$  = The size of the short axis which is bigger than or equal to 50% of short axes.

axes.

Flow Resistance Theory: The roughness geometry and channel geometry which determine the combined effect of the elements on the flow.

**Roughness Geometry:** The combined effect of the element on flow resistance depends on the proportion of the bed material which has a significant form drag and is determined by the geometry and disposition of the elements.

Experimental Setup & Procedures: Data were obtained for 0.5" and 0.75" roughness bed.

**Flume:** The flume is open and 1.168m wide and 9.54m long. Each roughness bed was constructed by smearing masonite boards with fiberglass resin. The boards were then screwed to the bed of the flume.

**Experimental Procedure:** For each bed, five to seven flows were measured for three different slopes (2,5 and 8%). At each flow, depth was gaged at a single cross section, so that mean flow and channel properties could be calculated.

**In Flows with Large:** Scale roughness, the cross-sectional area of flow is significantly affected by the projections of the elements into the flow.

| Sl. No. | Channel<br>Slope<br>(1) | Discharge in<br>Cubic Meters<br>per Second (2) | Mean Velocity<br>in Meters per<br>Second (3) | Mean Depth d<br>in Meters (4) | <b>Hydraulic Radius</b><br>$\mathbf{R} = \frac{A}{P} = \frac{Wd}{W+2d}$ |
|---------|-------------------------|------------------------------------------------|----------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
| 1       | 0.02                    | 0.00241                                        | 0.146                                        | 0.0141                        | 0.014                                                                   |
| 2       | 0.02                    | 0.01274                                        | 0.391                                        | 0.0279                        | 0.027                                                                   |
| 3       | 0.02                    | 0.03046                                        | 0.584                                        | 0.0446                        | 0.041                                                                   |
| 4       | 0.02                    | 0.05746                                        | 0.785                                        | 0.0627                        | 0.056                                                                   |
| 5       | 0.02                    | 0.07197                                        | 0.877                                        | 0.0702                        | 0.063                                                                   |
| 6       | 0.05                    | 0.00143                                        | 0.161                                        | 0.0076                        | 0.008                                                                   |
| 7       | 0.05                    | 0.00522                                        | 0.296                                        | 0.0151                        | 0.015                                                                   |
| 8       | 0.05                    | 0.01737                                        | 0.619                                        | 0.0240                        | 0.023                                                                   |
| 9       | 0.05                    | 0.03249                                        | 0.823                                        | 0.0338                        | 0.032                                                                   |
| 10      | 0.05                    | 0.04896                                        | 1.017                                        | 0.0412                        | 0.038                                                                   |
| 11      | 0.08                    | 0.00196                                        | 0.201                                        | 0.0084                        | 0.008                                                                   |
| 12      | 0.08                    | 0.00610                                        | 0.392                                        | 0.0133                        | 0.013                                                                   |
| 13      | 0.08                    | 0.01355                                        | 0.563                                        | 0.0206                        | 0.020                                                                   |
| 14      | 0.08                    | 0.03576                                        | 0.965                                        | 0.0317                        | 0.030                                                                   |
| 15      | 0.08                    | 0.06061                                        | 1.225                                        | 0.0424                        | 0.040                                                                   |
| 16      | 0.08                    | 0.07065                                        | 1.301                                        | 0.0465                        | 0.043                                                                   |

Table 1: Flume Data for 0.5 Inch Roughness Bed

Roughness depends upon  $\frac{d}{D_{50}}$  and  $\frac{d}{D_{24}}$ . For large scale roughness  $\frac{d}{D_{50}} < 2$  and  $\frac{d}{D_{24}} < 1.2$  where d is the mean depth

of flow and  $\frac{d}{D_{50}}$  = the size of the median axis which is bigger than or equal to 50% of median axis. Similarly  $D_{84}$  = The size of the median axis which is bigger than or equal to 84% of median axis. Similarly for Intermediate Scale roughness

 $2 < \frac{d}{D_{50}} < 7.5 \text{ and } 1.2 < \frac{d}{D_{84}} < 4.$ 

#### Table 2: Flume Data for 0.75 Inch Roughness Bed

|         | Channel   | Discharge in | Mean<br>Valasita in | Meen Donth d    | Hydraulic Radius                            |
|---------|-----------|--------------|---------------------|-----------------|---------------------------------------------|
| Sl. No. | Slope (1) | Cubic Meters | Motorg por          | in Motors (4)   | A Wd                                        |
|         | Slope (1) | (2)          | Second (3)          | III WIEters (4) | $\mathbf{R} = \frac{1}{P} - \frac{1}{W+2d}$ |
| 1       | 0.02      | 0.00580      | 0.222               | 0.0223          | 0.021                                       |
| 2       | 0.02      | 0.01181      | 0.348               | 0.0290          | 0.028                                       |
| 3       | 0.02      | 0.02482      | 0.484               | 0.0439          | 0.040                                       |
| 4       | 0.02      | 0.04047      | 0.586               | 0.0591          | 0.054                                       |
| 5       | 0.02      | 0.05348      | 0.656               | 0.0698          | 0.063                                       |
| 6       | 0.05      | 0.00381      | 0.230               | 0.0141          | 0.013                                       |
| 7       | 0.05      | 0.00843      | 0.363               | 0.0199          | 0.019                                       |
| 8       | 0.05      | 0.02037      | 0.583               | 0.0299          | 0.029                                       |
| 9       | 0.05      | 0.03333      | 0.782               | 0.0365          | 0.035                                       |
| 10      | 0.05      | 0.04586      | 0.904               | 0.0434          | 0.041                                       |
| 11      | 0.05      | 0.05460      | 0.979               | 0.0477          | 0.044                                       |
| 12      | 0.08      | 0.00207      | 0.186               | 0.0095          | 0.009                                       |
| 13      | 0.08      | 0.00631      | 0.380               | 0.0142          | 0.014                                       |
| 14      | 0.08      | 0.01007      | 0.430               | 0.0200          | 0.019                                       |
| 15      | 0.08      | 0.02825      | 0.807               | 0.0299          | 0.029                                       |
| 16      | 0.08      | 0.04518      | 1.032               | 0.0375          | 0.035                                       |
| 17      | 0.08      | 0.04879      | 1.064               | 0.0392          | 0.037                                       |

| Serial<br>No. | Mean Depth<br>d in Meters | $\frac{d}{D_{B0}}$ | $\frac{d}{D_{E4}}$ |
|---------------|---------------------------|--------------------|--------------------|
| 1             | 0.0141                    | 1.602              | 1.226              |
| 2             | 0.0279                    | 3.170              | 2.426              |
| 3             | 0.0446                    | 5.068              | 3.878              |
| 4             | 0.0627                    | 7.125              | 5.452              |
| 5             | 0.0702                    | 7.977              | 6.104              |
| 6             | 0.0076                    | 0.864              | 0.661              |
| 7             | 0.0151                    | 1.716              | 1.313              |
| 8             | 0.0240                    | 2.727              | 2.087              |
| 9             | 0.0338                    | 3.841              | 2.939              |
| 10            | 0.0412                    | 4.682              | 3.583              |
| 11            | 0.0084                    | 0.955              | 0.730              |
| 12            | 0.0133                    | 1.511              | 1.157              |
| 13            | 0.0206                    | 2.341              | 1.791              |
| 14            | 0.0317                    | 3.602              | 2.757              |
| 15            | 0.0424                    | 4.818              | 3.687              |
| 16            | 0.0465                    | 5.284              | 4.043              |

Table 3: Flume Date for 0.5 Inch Roughness D<sub>50</sub>=0.0088m, D<sub>84</sub>=0.0115m

Table 4: Flume Data for 0.75 Inch Roughness Bed D<sub>50</sub>=0.013m, D<sub>84</sub>=0.0193m

| Sl. No. | Mean Depth<br>d in Meters | $\frac{d}{D_{BC}}$ | $\frac{d}{D_{84}}$ |
|---------|---------------------------|--------------------|--------------------|
| 1       | 0.0223                    | 1.715              | 1.155              |
| 2       | 0.0290                    | 2.231              | 1.503              |
| 3       | 0.0439                    | 3.377              | 2.275              |
| 4       | 0.0591                    | 4.546              | 3.062              |
| 5       | 0.0698                    | 5.369              | 3.617              |
| 6       | 0.0141                    | 1.085              | 0.731              |
| 7       | 0.0199                    | 1.531              | 1.031              |
| 8       | 0.0299                    | 2.300              | 1.549              |
| 9       | 0.0365                    | 2.808              | 1.891              |
| 10      | 0.0434                    | 3.338              | 2.249              |
| 11      | 0.0477                    | 3.669              | 2.472              |
| 12      | 0.0095                    | 0.731              | 0.492              |
| 13      | 0.0142                    | 1.092              | 0.736              |
| 14      | 0.0200                    | 1.538              | 1.036              |
| 15      | 0.0299                    | 2.300              | 1.549              |
| 16      | 0.0375                    | 2.885              | 1.943              |
| 17      | 0.0392                    | 3.015              | 2.031              |

# **RESULTS AND ANALYSIS**

Hydraulic radius is the depth of low from the channel bottom to the point where velocity is half of the  $max^m$  velocity of flow.

Average value of hydraulic radius R = 0.029 metre for 0.5 inch roughness bed.

Average value of hydraulic radius R = 0.031 metre for 0.75 inch roughness bed.

Since roughness is more for 0.75 inch roughness bed for large size hence there is more increase in mean depth of flow for 0.75 inch roughness bed hence there is more increase in hydraulic radius for 0.75 inch roughness bed as compared to 0.5 inch roughness bed since hydraulic radius depends upon mean depth of flow.

Larger size of roughness material increases the mean depth of flow which is useful for irrigation and water distribution purpose i.e. capacity of the channel increases. Larger size of roughness materials reduce the mean velocity of flow hence the erosion of the channel bed is prevented. Since there is reduction is mean velocity of flow for 0.75 inch roughness bed of 1.102 times as compared to 0.5 inch roughness bed there is increase is mean depth of flow for 0.75 inch roughness bed of 1.047 times as compared to 0.5 inch roughness bed and there is 1.069 times more increase in hydraulic radius for 0.75 inch roughness bed as compared to 0.5 inch roughness bed.



Increase in depth is due to roughness of the channel bed whereas hydraulic radius is associated with free surface.

Figure 1: Variation of Parameter Hydraulic Radius with Mean Depth of Flow for 0.5 Inch Roughness Bed



Figure 2: Variation of Parameter Hydraulic Radius with Mean Depth of Flow for 0.75 Inch Roughness Bed



Figure 3: Variation of Hydraulic Radius with Mean Depth Velocity of Flow for 0.5 Inch Roughness Bed





**Figure 1:** As mean depth of flow increases hydraulic radius increases because hydraulic radius depends upon mean depth of flow. Hydraulic radius is the depth of flow taken from the channel bottom to a point where velocity is half of the maximum velocity.

Figure 3: As mean velocity of flow increases hydraulic radius increases since hydraulic radius depends upon  $\max^{m}$  velocity of flow.

## Birendra Kumar Singh

## 0.5 Inch Roughness Bed

## Equations

$$Q = 1.415 \left(\frac{d}{D_{50}}\right)^{0.707} - 1.712 \left(\frac{d}{D_{84}}\right)^{0.707} + \frac{Qmax}{2.482}$$
(A)

$$Q_{\text{max}} = 2.227 \left(\frac{d}{D_{50}}\right)^{0.449} - 2.511 \left(\frac{d}{D_{B4}}\right)^{0.449} + 2.482Q$$
(B)

$$d = 1.01 \left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} + \frac{dmax}{2.208}$$
(C)

$$d_{\text{max}} = 2.227 \left(\frac{d}{D_{50}}\right)^{0.449} - 2.513 \left(\frac{d}{D_{84}}\right)^{0.448} + 2.208d$$
(D)

$$V = 0.761 \left(\frac{d}{D_{50}}\right)^{1.314} - 1.084 \left(\frac{d}{D_{84}}\right)^{1.312} + \frac{V \max}{2.00}$$
(E)

$$V_{\text{max}} = 1.475 \left(\frac{d}{D_{50}}\right)^{0.678} - 1.768 \left(\frac{d}{D_{84}}\right)^{0.678} + 2.00V$$
(F)

$$\frac{d}{D_{50}} = 1.307 \left(\frac{d}{D_{84}}\right)$$
(G)

$$\left(\frac{d}{D_{50}}\right)_{\text{max}} = 5.068 \left(\frac{d}{D_{84}}\right)^{-0.450}$$
 (H)

## 0.5 Inch Roughness Bed

Relationship between Q<sub>max</sub>, hydraulic radius and mean depth

$$Q_{\rm max} = \frac{2.361(R)^{0.460}}{2.208(d)^{0.453}} \times 2.482Q \tag{1}$$

Relationship between mean depth of flow (d) with hydraulic radius and mean depth of low -1

$$d = \frac{.1.096R}{d} \times \frac{d_{\text{max}}}{2.208}$$
 (2)

$$d = 1.096(R)$$

Relationship between  $d_{max}$  with hydraulic radius and mean depth of flow:

$$d_{\max} = \frac{2.36 \left(R\right)^{0.460}}{2.208 \left(d\right)^{0.453}} \times 2.208 \, d \tag{3}$$

or another form of  $d_{\text{max}}$ 

$$d_{max} = 0.358 (R)^{0.460}$$

Relationship between mean velocity of flow with hydraulic radius and mean depth of flow:

$$V_{\rm max} = \frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{\rm max}}{2.00}$$
(4)

www.iaset.us

editor@iaset.us

## **Open Channel Flow Resistance**

Relationship between  $V_{\mbox{\scriptsize max}}$  and hydraulic radius and mean depth of flow:

$$V_{\rm max} = \frac{1.505(R)^{0.674}}{1.462(d)^{0.684}} \times 2.00\nu \tag{5}$$

Relationship between  $V_{\mbox{\scriptsize min}}$  and hydraulic radius and mean depth of flow:

$$V_{\min} = \frac{0.287(R)^{2.071}}{0.443(d)^{2.55}} \times \frac{V_{\max}}{8.911}$$
(6)

$$V_{\rm max} = 0.6d \tag{7}$$

$$V_{\rm max} = 1.462 \, d \tag{8}$$

$$V_{\min} = 0.443 d$$
 (9)

## MATHEMATICAL FORMULATION TO GET DIFFERENT PARAMETERS

## 0.5 Inch Roughness Bed

## Mathematical Formulation for Hydraulic Radius (R)

We know

$$Q_{\rm max} = 2.227 \left(\frac{d}{D_{50}}\right)^{0.449} - 2.511 \left(\frac{d}{D_{84}}\right)^{0.449} + 2.482Q \tag{1}$$

Again,

$$Q_{\max} = \frac{2.361 (R)^{0.460}}{2.208 (d)^{0.453}} \times 2.482 Q$$
<sup>(2)</sup>

Hence from (1) & (2)

$$\frac{2.361(R)^{0.460}}{2.208(d)^{0.453}} \times 2.428Q = 2.227 \left(\frac{d}{D_{50}}\right)^{0.449} - 2.511 \left(\frac{d}{D_{84}}\right)^{0.449} + 2.482Q$$
(3)

Taking d = 
$$1.01 \left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} + \frac{d_{\max}}{2.208}$$
 (4)

and 
$$\frac{d}{D_{50}} = 1.307 \left(\frac{d}{D_{84}}\right)$$
(5)

Substituting  $\frac{d}{D_{50}}$  from equation (5) in equation (4) and  $d_{max} = 0.0720$  metre

We get d = 0.0318 metre

www.iaset.us

#### Birendra Kumar Singh

(2)

Now substituting d = 0.0318 metre and  $\frac{d}{D_{50}} = 1.307 \left(\frac{d}{D_{84}}\right)$  in equation (3) and also average value of discharge

of flow  $Q = 0.029 \text{ m}^3$ /sec in equation (3) we get hydraulic radius R = 0.031 metre which in nearly equal to average value of hydraulic radius R = 0.029 metre.

Hence this mathematical formulation gives more conservative value to hydraulic radius R. Hence this mathematical formulation can be used to determine value of hydraulic radius R.

Determination of most appropriate value of hydraulic radius (R) : -

We know

$$V_{mean} = \frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{max}}{2.00}$$
(1)

and d = 1.096 R

Using equation (2) in equation (1)

We get 
$$\frac{0.680(R)^{1.261}}{0.755\{1.096(R)\}^{1-325}} \times \frac{V_{\text{max}}}{2.00} = V_{\text{mean}} = \frac{V_{\text{max}}}{2.00}$$
  
Hence  $\frac{0.680(R)^{1.261}}{0.755\{1.129R^{1.325}\}} = 1.00$ 

Hence  $R = 0.029_m$  which is equal to average value of hydraulic radius R = 0.029 metre

Hence equation (1) & equation (2) are taken into account for Mathematical formulation and also  $V_{mean} = \frac{V_{max}}{2.00}$ 

to obtain the most appropriate value of hydraulic radius R.

## Mathematical Formulation to Get the Value of Mean Depth of Flow (d)

$$V_{mean} = \frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{max}}{2.00}$$
(1)

Again

$$V_{mean} = 0.761 \left(\frac{d}{D_{50}}\right)^{1.314} - 1.084 \left(\frac{d}{D_{84}}\right)^{1.312} + \frac{V_{max}}{2.00}$$
(2)

$$d = 1.096 R$$
 (3)

From (1) & (2)

$$\frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{\text{max}}}{2.00} = 0.00 + \frac{V_{\text{max}}}{2.00}$$

**Open Channel Flow Resistance** 

Since 
$$0.761 \left(\frac{d}{D_{50}}\right)^{1.314} - 1.084 \left(\frac{d}{D_{84}}\right)^{1.312} = 0.00$$

By substitution of average value of =  $\frac{d}{D_{50}} \& \frac{d}{D_{84}}$ 

Hence 
$$\frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{\text{max}}}{2.00} = \frac{V_{\text{max}}}{2.00}$$

Or 
$$\frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} = 1.00$$

Now from equation (3)

$$\frac{0.680 \left\{ \frac{d}{1.096} \right\}^{1.261}}{0.755 (d)^{1.325}} = 1.00$$

Or 
$$\frac{0.680\{0.912d\}^{1.261}}{0.755(d)^{1.325}} = 1.00$$

Hence d = 0.0318 m which is equal to average mean depth of flow.

Hence these three equations will be used for mathematical formulation of mean depth of flow.

# Mathematical Formulation for $\mbox{Max}^m$ Value of Mean Depth of Flow $\mbox{d}_{max}\!\!:$ -

$$d = 1.01 \left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} + \frac{d_{\max}}{2.208}$$
(1)

$$d = 1.096 R$$
 (2)

From (1) & (2)

$$\frac{d_{\text{max}}}{2.208} = 1.096R$$

Since 1.01 
$$\left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} = \text{ZERO}$$
 by substituting the average value of  $\frac{d}{D_{50}}$  and

 $\frac{d}{D_{84}}$  from 0.5 inch roughness bed.

Hence  $d_{max} = 2.208 [1.096 R]$ 

 $= 2.208 \times 1.096 \times 0.029$ 

= 0.0702 metre

Hence we get same value of  $d_{max}$  by mathematical formulation from equation (1) & equation (2) compared to  $d_{max}$  for 0.5 inch roughness bed.

Another Mathematical Formulation for Mean Depth of Flow d

$$d = 1.01 \left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} + \frac{d_{\text{max}}}{2.208}$$
(1)

$$d_{\max} = \frac{2.36(R)^{0.460}}{2.208(d)^{0.453}} \times 2.208d$$
<sup>(2)</sup>

Or

$$\frac{d_{\max}}{\frac{2.36\left(R\right)^{0.460}}{2.208\left(d\right)^{0.453}} \times 2.208}$$

Hence from equation (1)

$$\frac{d_{\max}}{2.208} = d_{\max} \times \frac{2.208(d)^{0.453}}{2.36(R)^{0.460}} \times 2.208$$
(3)

Since 
$$1.01 \left(\frac{d}{D_{50}}\right)^{0.994} - 1.318 \left(\frac{d}{D_{84}}\right)^{0.994} = ZERO$$

by substitution of average value of  $\frac{d}{D_{50}}$  and  $\frac{d}{D_{84}}$  from 0.5 inch roughness bed.

Using d = 1.096R in equation (3)

we get  $d = 0.0294 \approx 0.0318$  m i.e. average value of mean depth of flow d = 0.0318 m for 0.5 inch roughness bed.

# Mathematical Formulation for Max<sup>m</sup> Discharge of Flow Q<sub>max</sub>

$$Q_{\rm max} = \frac{2.361(R)^{0.460}}{2.208(d)^{0.453}} \times 2.482Q \tag{1}$$

$$Q = 1.415 \left(\frac{d}{D_{50}}\right)^{0.707} - 1.712 \left(\frac{d}{D_{84}}\right)^{0.707} + \frac{Q_{\text{max}}}{2.482}$$
(2)

From equation (2)

$$Q = \frac{Q_{\text{max}}}{2.482} \text{ Since } 1.415 \left(\frac{d}{D_{50}}\right)^{0.707} - 1.712 \left(\frac{d}{D_{84}}\right)^{0.707} = \text{Zero}$$

by substituting the average value of  $\frac{d}{D_{50}}$  and  $\frac{d}{D_{84}}$  from 0.5 inch roughness bed.

www.iaset.us

From equation (1)

$$Q = \frac{2.208 \, Q_{\text{max}} \, (d)^{0.453}}{2.361 \, (R)^{0.460} \times 2.482}$$

Now from 
$$Q = \frac{Q_{\text{max}}}{2.482} = \frac{0.07197}{2.482} = 0.029$$

Hence 
$$\frac{2.208 \, Q_{\text{max}} (0.0318)^{0.453}}{2.361 (0.029)^{0.460} \times 2.482} = 0.029$$

Hence  $Q_{\text{max}} = 0.0719$  metre

Taking  $d = 0.0318_m$  and hydraulic radius = 0.029m and  $Q = 0.029 \text{ m}^3/\text{sec}$ 

Hence equation (1) and equation (2) can be taken for mathematical formulation for  $Q_{max}$ .

# Mathematical Formulation for Maximum Mean Velocity of Flow $V_{\text{max}}$

We know

$$V_{\rm max} = 0.761 \left(\frac{d}{D_{50}}\right)^{1.314} - 1.084 \left(\frac{d}{D_{84}}\right)^{1.312} + \frac{V_{\rm max}}{2.00}$$
(1)

Again,

$$V_{mean} = \frac{0.680 (R)^{1.261}}{0.755 (d)^{1.325}} \times \frac{V_{max}}{2.00}$$
(2)

Hence from equation (1) and (2)

$$\frac{V_{\text{max}}}{2.00} = \frac{0.680(R)^{1.261}}{0.755(d)^{1.325}} \times \frac{V_{\text{max}}}{2.00}$$
  
Since  $0.761 \left(\frac{d}{D_{50}}\right)^{1.314} - 1.084 \left(\frac{d}{D_{84}}\right)^{1.312}$ 

= ZERO by substituting the average value of  $\frac{d}{D_{50}}$  and  $\frac{d}{D_{84}}$ 

Hence 
$$\frac{V_{\text{max}}}{2.00}$$
 and  $\frac{0.680 (R)^{1.261}}{0.755 (d)^{1.325}} \times \frac{1.301}{2.00}$ 

Where  $V_{max} = 1.301$  m/sec

## www.iaset.us

editor@iaset.us

Now 
$$\frac{V_{\text{max}}}{2.00} = \frac{0.680 (0.0290)^{1.261}}{0.755 (0.0318)^{1.325}} \times \frac{1.301}{2.00}$$

Where hydraulic radius (R) (average value) = 0.0290 metre and average value of mean depth of flow d = 0.0318 metre

Hence 
$$\frac{V_{\text{max}}}{2.00} = 0.6505$$
  
...  $V_{\text{max}} = 1.301 \text{ m/sec}$ 

Which is same to  $V_{max}$  given for 0.5 inch roughness bed. Hence equation (1) and equation (2) are taken for mathematical formulation for  $V_{max}$ .

## Mathematical Formulation for Mean Velocity of Flow (V<sub>mean</sub>)

$$V_{\rm max} = \frac{1.505 \ (R)^{0.674}}{1.462 \ (d)^{0.684}} \times 2.00V \tag{1}$$

Again,

$$V_{\rm max} = 1.475 \left(\frac{d}{D_{50}}\right)^{0.678} - 1.768 \left(\frac{d}{D_{84}}\right)^{0.678} + 2.00V \tag{2}$$

Since  $1.475 \left(\frac{d}{D_{50}}\right)^{0.678} - 1.768 \left(\frac{d}{D_{84}}\right)^{0.678} = \text{ZERO}$  by substituting the average value of

 $\frac{d}{D_{50}}$  and  $\frac{d}{D_{84}}$  from 0.5 inch roughness bed.

Hence from equation (1) and (2)

$$2.00V = \frac{1.505(R)^{0.674}}{1.462 \left\{ 1.096(R) \right\}^{0.684}} \times 2.00V$$

Where d = 1.096(R)

Hence 2.00V = 
$$\frac{0.1384}{1.462 \{1.065 \ R^{0.684}\}} \times 1.3$$

Or 2.00V = 
$$\frac{0.1384}{1.557R^{0.874}} \times 1.300$$
 (3)

Taking average value of hydraulic radius R = 0.0290 metre. Average value of mean velocity of flow V = 0.65 m/sec

Hence from equation (3)

### www.iaset.us

36

V = 0.65 m/sec

Hence same as that of mean velocity of flow for 0.5 inch roughness bed.

Equation (1) and equation (2) and d = 1.096 R can be taken for mathematical formulation to determine average value of mean velocity of flow.

## 0.5 Inch Roughness Bed

- Average value of hydraulic radius R = 0.029 metre
- Average value of mean depth of flow d = 0.318 metre
- Average value of mean velocity of flow V = 0.65 m/sec

• Average value of 
$$\frac{d}{D_{50}} = 3.582$$

• Average value of 
$$\frac{d}{D_{84}} = 2.740$$

• Average value of discharge of flow  $Q = 0.029 \text{ m}^3/\text{sec}$ 

## CONCLUSIONS

The mean depth of flow and hydraulic radius increase for large roughness material. Also mean velocity of flow decreases for large roughness material. Hence larger size roughness material provides large capacity of the channel and larger size roughness material is useful in steep slope for reduction in mean velocity of flow.

## REFERENCES

- 1. A Caroglu, E.R (1972) "Friction factors is solid material systems "J. Hydraulic Div. Am. SOC. Civ. Eng, 98 (HY 4),681 699
- Alam, A.M.Z. and Kennedy J.F (1969)" Friction factors for flow in sand bed channels "J Hydraulic Div. Am. SOC Civ. Eng 95(HY 6), 1973 – 1992
- Ben Chie Yen F. (January 1.2002) "Open channel flow resistance" Journal of the Hydraulic Engg. Vol 128, No – 1 ASCE, PP, 20 – 39
- Bray, D.I.(1979) "Estimating average velocity in gravel bed rivers "J Hydraulic Div. Am. SOC Civ. Eng. 105 (HY 9), 1103 - 1122
- Griffiths, G.A.(1981) "Flow resistance in course gravel bed rivers "J. Hydraulic Div. An soc. Civ. Eng. 107 (HY - 7), 899 - 918
- 6. Hey R.D (1979) "Flow resistance in gravel bed rivers "J Hydraulic Div Am SOC CIV Eng, 105 (HY 4), 365 379.
- James C. Batharst (December 1981) "Resistance Equation for Large Scale Ranghnen" Journal of the Hydraulics Division, American Society of Civil Engineers, Vol. 107 NO HY 12, PP 1593-1613.

- James C. Bathurst (December 1978) "Flow resistance of large-scale roughness" Journal of the Hydraulic Division Vol 104 NO 12 PP 1587-1603
- Lovera, F. and kennedy J.F (1969) "Friction factors for flat bed flows in sand channel" J Hydraulic Div, Am. Soc. Civ Eng 95 (HY 4) 1227 – 1234.
- Petryk, S. and shen, H.W (1971) "Direct measurement of sheer strem in a flume, "J Hydraulic Div. Am. SOC. Civ. Eng. 97 (HY - 6), 883 - 887

# **APPENDIX – 1: NOTATION**

The following symbols are used in this paper

| d               | = | Mean depth of flow in meters                                                     |
|-----------------|---|----------------------------------------------------------------------------------|
| Q               | = | Discharge in cubic meters per second                                             |
| V               | = | mean velocity of flow in meters per second                                       |
| D <sub>50</sub> | = | the size of the median axis which is bigger than or equal to 50% of medium axis. |
| D <sub>84</sub> | = | The size of the median axis which is bigger than or equal to 84% of median axis. |
| R               | = | Hydraulic radius                                                                 |
| А               | = | Flow cross sectional area                                                        |
| W               | = | Width of the channel                                                             |
|                 |   |                                                                                  |

P = wetted perimeter